Mathematical Finance Dylan Possamaï

Assignment 2

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a filtration \mathbb{F} , unless otherwise stated.

Approximating stopping times

Let τ be an \mathbb{F} -optional time. Define for any integer $n \in \mathbb{N}^*$ the following random times, for any $\omega \in \Omega$

$$\tau_n(\omega) := \begin{cases} \tau(\omega), \text{ if } \tau(\omega) = +\infty, \\ \sum_{k=1}^{+\infty} \frac{k}{2^n} \mathbf{1}_{\{(k-1)/2^n \le \tau(\omega) < k/2^n\}}. \end{cases}$$

Show that $(\tau_n)_{n\in\mathbb{N}^*}$ is a non-increasing sequence of \mathbb{F} -stopping times, which converges to τ , and such that for any set $A \in \mathcal{F}_{\tau+}$, we have $A \cap \{\tau_n = k/2^n\} \in \mathcal{F}_{k/2^n}$, for any integers $(n,k) \in (\mathbb{N}^*)^2$.

Local boundedness and filtrations

Let U be a non-negative and unbounded random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, define

$$X_t := U \mathbf{1}_{\{t>1\}}, \ t \ge 0,$$

and let $\mathbb{F} := \mathbb{F}^X$.

- 1) Show that \mathbb{F} is not right-continuous and that a random time τ is an \mathbb{F} -stopping time if and only if τ is a deterministic number in [0, 1], or $\tau = f(U)$ for some Borel-measurable map $f : \mathbb{R} \longrightarrow (1, +\infty)$.
- 2) Show that X is not (\mathbb{F}, \mathbb{P}) -locally bounded.

Emery topology and change of measure

Show that the (\mathbb{F},\mathbb{P}) -Émery topology is invariant under an equivalent change of measure.

Completeness and the Emery topology

We let $\mathcal{S}_b(\mathbb{F},\mathbb{P})$ be the space of bounded, simple \mathbb{F} -predictable processes, and we assume that \mathbb{F} satisfies the usual conditions.

- Show that the space of càdlàg and F-adapted processes, as well as the space of càglàd and F-adapted processes are complete under the (F, P)-Émery topology (you may use here the result of Proposition 4.6.5 and Theorem 4.6.2 from the lecture notes).
- 2) Show that if X is càdlàg process, the following are equivalent
 - 1. the map J_X from $\mathcal{S}_b(\mathbb{F},\mathbb{P})$ to the set of càdlàg and \mathbb{F} -adapted processes defined by

$$J_X(\xi) := \int_0^{\cdot} \xi_s \mathrm{d}X_s,$$

is continuous with respect to \mathbb{P} -ucp convergence on both spaces;

2. for every $t \in [0, +\infty)$, the mapping I_{X^t} from $\mathcal{S}_b(\mathbb{F}, \mathbb{P})$ to $\mathbb{L}^0(\mathbb{R}, \mathcal{F})$ with $I_{X^t}(\xi) := J_X(\xi)_t$, is continuous with respect to the uniform norm metric on $\mathcal{S}_b(\mathbb{F}, \mathbb{P})$ and convergence in \mathbb{P} -probability on $\mathbb{L}^0(\mathbb{R}, \mathcal{F})$.